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Why do we consider quantized systems

v"Need of practical systems

v"Need of the development of control theory



Quantized systems: binary-valued data

| ® Internal combustion engine air-fuel ratio (AFR) control |

Only when engine AFR is 14.7, the toxic tail gas can be effectively
cleaned by the catalyst. Thus, accurate control of AFR is very important.

* Front oxygen sensor (usually wide range type): detects the air-
fuel ratio

Front sensor Rear sensor

» Rear oxygen sensor (wide range or switch type): detect the f/,,\:ﬁA
conversion efficiency of the catalyst & the operation of upstream =———\ )
0Xygen sensor.

Catalyst




Quantized systems: binary-valued data

® Internal combustion engine air-fuel ratio (AFR) control

Only when engine AFR is 14.7, the toxic tail gas can be effectively
cleaned by the catalyst. Thus, accurate control of AFR is very important.

* Front oxygen sensor (usually wide range type): detects the air-
fuel ratio
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platinum Catalysis, the oxygen concentration difference
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Quantized systems: binary-valued data

® Internal combustion engine air-fuel ratio control

Kang Song, Tianyuan Hao, and Hui Xie. "Disturbance rejection control of air—fuel ratio with transport-delay in engines.” Control Engineering Practice 79 (2018): 36-49.
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 Binary sensor: Whether the excess air coefficient Ais 1
e Control goal: Excess air coefficient A is 1, or AFR is 14.7

* Transport-delay:
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® Mixed dynamics:
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* How to realize more accurate AFR control with switching oxygen sensor (less used in industry now)
* How to use the rear oxygen sensor (mostly switch type) to diagnose the front sensor and catalyst
* How to realize good AFR control with tilt back sensor in fault mode




Quantized systems: binary-valued data
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McCulloch-Pitts model

Nnjq Nio
yi=S zwijxij + zwijfij C;
=1 =1

Caianiello model

x(t+1) =S ZZWl]x](t C;
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Excitation / Inhibition

Hopfield model
Nagumo-Sato model
Aihara model

The 1-th neuron's M-P model,
the basis of many NN works



Quantized systems: quantized data

® Wireless sensor networks(WSNs) Energy for
Energy to
: : : 1000 -- 3000
» Lower quality sensor transmit 1 bit )
. operations
» Limited energy
» Limited bandwidth (Shnayder et al, 2004)
P eres o o
Low cost and low power consumption WSNs E ] E \ D/ﬁ?o e —iim
Is of great importance in military surveillance, / E/ i} E S
environmental monitoring, healthy care, /' e o0’ o
home & other commercial applications E ) | e 0 0 | s
(Akyildiz et al, 2002) e @l

Station 5

® Energy efficient algorithm for network coverage (Cardei & Wu, 2004; Krasnopeev et al, 2005)

® Distr. estim. & KF (Wong & Brockett, 1997; Reibeiro & Giannakis, 2006; K.Y. You et al. 2008)

® Consensus of networked systems (Aysal et al, 2008; Carli et al, 2010; Li et al, 2011; Meng et al, 2016)
® Decentralized detection (Xiao & Luo)



Classification of quantized systems

e Binary quantization: One-threshold
e Multi-layer quantization: Multi-threshold quantization

e Fixed threshold quantization

e Logarithmic quantization _ _ o
e Time-varying threshold quantization

e Scalar quantization e Uniform quantization
e \ector quantization e Non-uniform quantization

e Finite threshold quantization
e Infinite threshold quantization



e Accurate data are hard to get, only coarse data or quantized data are available;
* Not economic to use accurate sensor/data, no need to use accurate data;
e Due to bandwidth limit, only quantized data can be got; ......



Feature of quantized systems

B Binary-valued sensor m Set-valued sensors u Infini';e threshold quantization
(o . :
1,if y;, > C; ay, ify > Cq; _ _ _
qk = {O lfy < C aj; lfC] < y S C}'_l; &, ynE [ 1.58, 0.58),
ok = s=S5) =1 i=23,...m—1; s, =3 0, y,€[-0.5¢0.5¢),
yir =C or y, <C @, 1Y < Cps. £ Yn€ [0.5¢,1.5¢),
. -

Wide practical background:
Sensor networks
Integrated circuits
Network communication
Mechanical systems
Smart material
Automotive
Chemical engineering
Biology systems, ...



Feature of quantized systems

B Binary-valued sensor m Set-valued sensors u Infini';e threshold quantization
f 1 E;
1,if y, > C; ay, ity > Cy; _ _ _
qk = {O lf < C aj; lfC] < y S C}'—l; 8, ynE [ 1.58, 0.58),
MY =L s=5(y) =1 =23 m—1; sy, =2 0, y,€[-0.5¢0.5¢),
v = Cor y, <C (O, iy < Gy & yn€ [0.5¢,1.5¢),
Y
Wide practical background: Wide Features: Less information, high nonlinearity

Sensor networks Only the relationship of the concerned signal and the threshold

Integrated circuits can be obtained, not the value of the signal.

Network communication Different from sampling, for sampled data, the data is accuracy.

Mechanical systems Different from the existing works based on quantization

Smart material filtering and estimation, where some closed-loop conditions are

Automotive required on quantization error, which depend on control and

Chemical engineering the performance of the closed-loop systems.

Biology systems, ...



Why do we consider quantized systems

v"Need of the development of control theory



Get a desired modelling and control goal with as less data as possible

e Nyquist-Shannon sampling theorem

When converting from an analog signal to digital, the sampling frequency must
be greater than twice the highest frequency of the input signal, in order to be able
to reconstruct the original input signal perfectly from the sampled version.
(http://www.fact-index.com/n/ny/nyquist_shannon_sampling_theorem.html)

It tells us: in order to perfectly reconstruct an analog signal from its
sampled version, how many sampled data are really needed.

e Continuous processes: T. Kailath, 1980; L. Arnold, 1974; J.C. Doyle et al., 2013; ......
e Sampling data: Nyquist-Shannon sampling theorem, periodic/non-periodic sampling, ......

e Quantized data: R.E. Curry, 1970; A. Gersho & R.M. Gray, 1991; L.Y. Wang et al., 2003;
M.Y. Fu et al., 2009; Godoy et al., 2011; K.Y. You, 2015; Z.P. Jiang & T. Liu, 2018; ......

e Event-driven systems: K. Johansson et al., 2012; G. Feng, 2013; Z.P. Jiang, 2015; ......

How to use less data to reach a desired modelling and control goal ?
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State-feedback control

Plant Control

x=Ax+Bu = u=Kx

Pole-placement,
Stabilization,

LQ control,

Robust control, etc.

Key assumption: States are known!




State-feedback control Output-feedback control

Plant Control Plant Control
x=Ax+Bu = u=Kx x = Ax + Bu, - u = Ky;
y = Cx + Du;
X =Ny + Fu,
Pole-placement, u =K% + Hy;
Stabilization,
LQ control, Static output-feedback,
Robust control, etc. Dynamic output-feedback,

Key assumption: States are known! Key assumption: Outputs are known!




Filtering, identification, adaptive control

® System model:

* x = Ax+ Bu —— £ =x+w — — Measurement noises
* Ve T z a; Vit Zbiuk—i +d, =0"@, +d,
i=1 i=1

® Estimation method: LS, SG, LMS, KF, ......

When y, 1s known, we can use LS to estimate the parameter :

k
6, = arg min Z(yi -0 )%

OcR i=1

and use the certamty equivalence principle to design control.

® Key assumption: States/outputs are known!



Basic problems of quantized systems

¥ How to realize satisfactory identification and control with quantized data?

» System identification

e Identifiability

* |dentification methods

e Estimation error, conv. rate

* Input/quantizer design

e Uncertainty influence on est. error,
conv. rate, computing complexity

* (Asymptotic) Efficiency



Basic problems of quantized systems

¥ How to realize satisfactory identification and control with quantized data?

» System identification » State estimation

* |dentifiability  State estimation

* Identification methods e Convergence performance
 Estimation error, conv. rate e Computation complexity

* Input/quantizer design * Threshold’s influence on est.

e Uncertainty influence on est. error, error, conv. rate, computing
conv. rate, computing complexity complexity
* (Asymptotic) Efficiency ® e



Basic problems of quantized systems

¥ How to realize satisfactory identification and control with quantized data?

» System identification

e Identifiability

* |dentification methods

e Estimation error, conv. rate

* Input/quantizer design

e Uncertainty influence on est. error,
conv. rate, computing complexity

* (Asymptotic) Efficiency

> State estimation
e State estimation
e Convergence performance

e Computation complexity

e Threshold’s influence on est.

error, conv. rate, computing
complexity

» Control synthesis
e Stabilization

* Robust control

e Output-feedback

* Adaptive control

e Consensus control



Identifiability

m Binary set-valued sensor
Threshold

y.=2Cory <C

1, f y, >C;
O = :
0, if y <C.

When vy, is known: Y, =bu, ==> b=y /U,

When vy, is unknown : Y, =bu, * b=y, /u,



Identifiability

B Guess a word
e Given a book of 400 pages, with no more than 1000 words on each page.
(Thus, totally there is no more than 0.4 million words in the book.)

* You can choose a word from the book randomly, remember it by yourself
and do not tell me which it is.

e | can get the word that you choose by asking you no more than 20 guestions,
and you can answer each question only by “Yes” or “No”.

e Using binary observations to get good (even exact) estimation
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®\\Vhat are the recent progresses:
Identification, adaptive control, consensus



Parameter identification with quantized data

® Bisection method and parameter decoupling

® Likelihood method

® Expectation maximization method

® Empirical measure method with/without truncation

® Recursive algorithms:
Stochastic approximation, sign-error, CRLB, Quasi-Newton based



Parameter identification with binary-valued data

B Model: ® ARMAX: y(® = ) aiy(t =+ ) bu(t—+d®
i=1 =0
! i i a;, b;j—unknown parameters, d (t) — noises
| y |1 |
u I:C> Plant > S ) s ® \Wiener system:
| C i
: G BEEm s s mmmm s s s s |
"""""""""""""""""""""""" | L—s L= NL —»?h —y:» sensor
y(k) = P(y,u,0) + d(k), N ‘.
s(k) = 0,y(k) > C; XO)= Y au(t—i),  y®) = Y x(Bb +d)
1,y(k) <C. = =
® Hammerstein system:
( n-1
B Goal: y(t)=Zaix(t—i)+d(t),
Estimate the unknown parameters < T
- : k)=b biw (), by, = 1.
by using binary-valued data. 0 +JZ e ®




Identification with binary-valued data

e Model: y(t) = bu(t) o ae | Valt
— —
e Input: u(1) = L b(®)  b(0)
b(0) + b (0)
Binary
e 1-step estimate:
If y()<C, thenb<b(l) = Q(O);b(o); Hbm o *

b(0) +b (0)

| >

b(1) 5| (1)

If y(1) >C, then b>b(1) =




® Model: y(t) = bu(t)+ bu(t-1),
y(1) =bu(l),
() =bu(2)+bu(l),  hOT
y3)=bu3) +bu(2), O

y(1) =bu(l),
y(3) =b,u(2).




Deterministic framework

e Model: y(t) = Zn:biu(z‘—i)+d(t)

(1, if x> C;

i <
S:S(x):<J’ lfC{<x_Cf‘1’

,,,,,,

m, f x<C, _,.

eTheorem: For FIR system, suppose |d(7)|< 9,
Let b (0) = max b,(0), 5(0) =min b,(0), £(0) = Rad(€2,),

1<i<n I<i=n
o = m(C, —C,)+20 5(0)’ a, = (€, =C,_ —20)b(0) ,
20,-C, -6 C -5
a, =(C, +o)(C, + Cm—l)_l9 ¢,-C,=.=C,,-C,,.
Then Ve €(o,£(0)), we have s
o, ten
N(E) < (1 — & )5(0) .
e,

eMethod: Bisection + Parameter decoupling



Deterministic framework

e Model: y(t) = Zn:biu(z‘—i)+d(t)

(1, if x> C;

i <
S:S(x):<J’ lfC{<x_Cf‘1’

m, f x<C, _,.

eTheorem: For FIR system, suppose |d(7)|< 9,
Let b (0) = max b,(0), 5(0) =min b,(0), £(0) = Rad(€2,),

1<i<n 1<i<n
o = m(Cl — Cz) +20 5(0)’ a, = (Cl - Cm—l —20)b(0) ,
2C,-C,-0 C,—o0
a, =(C, +o)(C, + Cm—l)_l9 ¢,-C,=.=C,,-C,,.
Then Ve €(o,£(0)), we have

-1/2
o, +éen

N(E) < ’ (:n_aal )5(0) .

2

eMethod: Bisection + Parameter decoupling

e Model: y(t) = 0u(t) + d(t)

® Bisection method

_ 2C
Y = Ok—1+0k-1’
- C—¢ |
Ok = Ok-1,0r = U Jif s =0,
<_ C+¢ _
O = ——,6k = Ok-1,if s =1,
\ Uk

where 8 € [8y,00], ldi]l < e <C,n=1

e Algorithm properties
> the irreducible relative error
> the time complexity

> exponential convergent for noise-free case

*L.Y.Wang, J. F. Zhang & G. Yin, IEEE TAC, 2003

Follow-on work: *M. Casini, A. Garulli & A. Vicino, CDC, 2007;
m—.. Casini. A. Garulli and A. Vicino, IEEE TAC, 2011



Stochastic framework: Likelthood method

] ] ] y(t) = ibiu(t—i)+d(t)
B Normal LS method B Likelihood function -
) ) 0 = argmaxy.q Pr (s1:5|P1:n, 0)
Vi = Zaiyk—i + Zbiuk—i +d, =60"¢, +d, = argmaxycq log Pr (s1.n[¢1.n, 0)
i=1 i=1 N
= argmax)c, » _log Pr (si|¢x, 0)
When y is know, the LS is: L—1
. & — The solution is
f, =argmin Y (y,—0"p, ,)*; )
OcR j=1 1 1 T
> (—f{skzl} - —f{sk:O}) fr@p =0
—~ \ Fy 1 — F,
and use the certainty equivalence N
principle to design control. where
F = F(C = ¢19) fr = f(C — ¢;0)
e Difficulty: there is no explicit solution!




e Likelihood function:
0 = argmaxycq Pr (s1.n|¢1:n, 0)

= argimaxycq log Pr (31:N|¢1:N5 9)

N
= argmaxy.q Z log Pr (sg|¢x, 0)

k=1
® The solution:
N
1 1
g (fkf{swl} - ﬁl{skzo}) frdy =0

Fo = F(C—¢L0) f, =f(C—¢l0)

e Difficulty: no explicit solution!

® Cramér-Rao lower bound:
—1

k
2
A = (E )\quz(;b?) where \; = ﬁ
=1

® The ideal algorithm (CRLB based):
Or = Or_1— Pro103,
5 = A (sk _F (c - ¢{ék_1))
Py = Pi1— fidikPeo10x6T Pi
fr=F(C = ¢}8i1)

- SO = dilen)
F(C — ¢185_1)(1 — F(C — ¢10_1))




Expectation maximization method

e Likelihood function:
0 = argmaxy.q Pr (s1.x|¢1:n, 0)
= argimaxycq log Pr (31:N|¢1:N5 9)

= argmax,.q Z log Pr (sk|¢x, 0)
k=1

log P(x; 6)

Supplementary Figure 1 Convergence of the EM algorithm. Starting from initial parameters %
the E-step of the EM algorithm constructs a function 9: that lower-bounds the objective function

logP(x:60)_ In the M-step, i is computed as the maximum of §:. In the next E-step, a new

lower-bound Z:+1 is constructed; maximization of Z:+1 in the next M-step gives 8“7’ etc.

*D. Marelli, K.Y. You & M.Y. Fu, Automatica, 2013

* B. Godoy, G. Goodwin, J. Aguero, D.
Marelli & T. Wigren, Automatica, 2011

1 ¢ 1;2152) R1/2 IV R1/2
= EZ ki ol +2 CEL S /@ R

=1 :
+¢/ (6 — 0) (6 — em]
*Y. L. Zhao, W. J. Bi & T. Wang, SCIS, 2016
On(t+1)
N

hr - -~
=On (1) - (Z @k*’f’%) I(Z@k f(C =@ On(1))
k=1

k=1

{ Is=1) B I{s,=0} D
F(C—=olon(t) 1-F(C—oLon(t))



Empirical measure method with set-valued data

e Empirical measure method: ® Algorithm properties:
1 1 =
Sy =211 St = 2= Lp <ci-0gy = § = F(C1 — 90), » Convergence:
O(N)— 6 wp.l.

e Assumption: C, F(-) are known L
T Vs v, » Convergence rate

o’(N)=O(1/N).

~ . > Efficiency:
Oy =7 [C1-F ()] - 0.
N[O-Z(N) _O-?:R(N)] — 0.

where F(-) is the PDF of noises, @, = [@4,*, @,,]",

@ IS the n-period Input; * L. Y. Wang, J. F. Zhang & G. Yin, IEEE TAC, 2003
*Y. L. Zhao,, L. Y. Wang, G. Yin & J. F. Zhang, Automatica, 2010



e Empirical measure method (with truncation) ® Algorithm properties:

J k—
Sk =y Zi=1 St » Convergence:
T
Ly =[C= G+, C=GEN | N
(Z,E,‘(<z, 6, » 6,w.p.1
G(&) =<F(¢),z<é<1-2 » Convergence rate
L Z, &L >1- 2z . ;
ék =¢_1Lk' '\IEE;:N(U (:V) gCH,j(N))=U
where z is chosen by Vo o Ve oW _
l'.1 Y}? Vs, :
< p = F(Ci—() <12 K » Main Idea of the proof
and ¢; depends on the true parameter. VooV, e v Taylor expansion;

Uniformly bounded of the probability

The true parameter
range must be known

density function ;

4 | 5] *Y. L. Zhao, J. F. Zhang, L. Y. Wang & G. Yin, SIAM J. Control & Optim, 2010




e Empirical measure method (without truncation)

fk __ l 1 Sln+u
f1/2,§k —

{L = €,i,0<€,‘;<1,
\1/2,€,§ =1,
_ . _ . T
Ly =|C—F (), . C—F D],
0, = d31L,.

n—1 n—2 "

® Algorithm properties:
» Mean square convergence rate

- : 1

The convergence rate is at the same
order as that of accurate measurements

» Main idea of the proof:

Z FU(I/N)CLS' (1 — 8)N " = O(e- ),

Z F7H(I/N) Oyt (1= )N = O(e™®Y).

*Y. Zhao, T. Wang & W. Bi, IEEE TAC, 2019



Recursive projection algorithm

® Stochastic approximation type:

( Lok

— ¢iOk) — Sk+1)>:

Orrr =g <9k

rk+1—1+z (pl Qi -

where Ilg (-)is the projection from R™ to 0O, defined as
— . _ n
g (§) = arg minli§ — {|l, vE € R

® Assumption: The inputs {¢, k = 1,2, --- } satisfy
sup||@kll £ M < co. Besides,

k=1
1xok+N-1 ,
NE- ) pip; =06°l.
1=

*J.Guo &Y. L. Zhao, Automatica, 2013
*T.Wang, M. Hu &Y. L. Zhao, CAC, 2018

® Difficulty:
k
E0L0, = EY o P aWhWikPiaoid (Fy — s1)° + 6y W Wibo
=1

+2E Z 651[}[/&%:1&-&_1@1@ (F} — S.’,)
=1

= O(1/k)
Cross item

® Convergence: mean-square and almost surely
convergent, i.e.,

limy 0 E(Bx — 6)T (6 — 6) = 0

limk_)ooek = 8, d.S.

® Convergence Rate:
E(0, — 0)7 (6, — 6)=0(1/k)



Recursive projection algorithm

e Sign-error based: ® Properties:

The threshold of binary quantizer is design as time-varying _ _ .
threshold ¢%8,, i.e., > For noise-free case with PE condition,

. 1
— o _ square convergence rate IS O (—),
Sk+1 I{Yk+1>§0£9k} I{Yk+1<¢£9k} k?

Then the algorithm is » For bounded noise case, an upper bound
R - B of the estimation error is given in terms
Or+1 = llo (9k + ﬁ5k+1) of the noise bound and the lower bound
of the PE condition.
Th+1 = {'(=1 ‘PLT‘PL'
where IIg (+)is the projection from R™ to ©, defined as » For stochastic noise case, mean-square
- B _ - and almost surely convergence are
o (§) = argmin||& — ||, v& € obtained, mean square conv. rate is
1
® Assumption: The inputs {¢, k = 1,2, --- } satisfy 0 (E) '
sup|leg|l 2 M < oo, and

k=1

1 ~—k+N-1
N P Lrt = ) *Y.Wang, Y. Zhao, J. F. Zhang & J. Guo, submitted to Automatica, 2021,



Recursive projection algorithm

® CRLB based:

< P _p _ Bi Pk ®ic Pr
\ LT 14 Bl Peos
fk fé
where a;, = ———, B = —%—,
T Fr(1-Fy) B Fr(1-Fy)

fr = f(C—@iby), F = F(C — ¢} 6)

® Assumption: The inputs {¢, k = 1,2, --- } satisfy

sup||@kl| £ M < co. Besides,
k=1

Y S T

llggfﬁziﬂ(pi(pi > 0.

® Convergence:

For 1-order system with binary-valued observations,

the algorithm is mean square convergent, i.e.
lim E6 = 0.

k—0o0

(. ~ .
Or+1 = llg (9k + apPropr (F(C — 91 6y) — Sk+1))

® Convergence Rate:
. 1
the mean square convergence rate is O (E)

® Asymptotically efficient:

lim A N (E; — Ay) = 0.

k— o0
where k .
Ap = ( > ﬂfo,-(b}r>
=1 5
is the CR lower bound with p; = Ji

Fb(l — FL)

® Difficulty of high-order: Compression matrix --
random, correlated, with unknown parameters

k

k
Wie = [T (1=0;Pi0507) = 11 Wi

j=l+1 j=l+1

0; = a; f(C — ¢16;.,)

*H Zhang, T. Wang & Y. Zhao, IEEE SMC, 2019



Recursive projection algorithm

e Quasi-Newton type:

Oy — Upr {gk n akﬁkpmkekﬂ} ® \\eak excitation condition: The input sequence

{py, F), } satisfies sup||¢l| 2 M < »,a.s., and

k=1
Pi1 = Py — Biar Peoroy, Py,

€rt1 = Skt1 — 1+ Pl (Ck o Cbzgk) {101—0; Amax (Z 0%'0?) } /)‘min (Z Cjiogﬂ) — 0. as.
i=1 1

1
T 5o P
0 < fry1 < min {51{; |m|§1§1+c fk+2($)}= ® Convergence:
The estimate is convergent under non-PE
where Il (-)is the projection from R™ to © given by condition

Mo () = arg minll§ —¢llg, ¢ € R™,
and [[x|[o = xTQx for x € R™.

~ 2 1 , /\nlax P_1
9”+1H =0 ( 8 { { "H})> . a.s.

)\min { P-,:_&l }

*L.T. Zhang, Y. L. Zhao & L. Guo, submitted to Automatica, 2021
*D. Marelli, K.Y. You & M.Y. Fu, Automatica, 2013

The scalar gains= The matrix gains; PE condition = Weak excitation condition




Parameter identification with quantized data

® Bisection method and parameter decoupling for noise-free or bounded noises
® Likelihood method for the case with stochastic noises

® Expectation maximization method

® Empirical measure method with/without truncation

® Recursive projection algorithm:
v’ Stochastic approximation: scalar step, known distr. function
v" Sign-error: scalar step, time-varying threshold, unknown distr. function
v' CRLB based: matrix step depending on estimate, asymptotic efficiency
v Quasi-Newton: matrix step, weak excitation condition



Applications of quantization identification

® Complex disease modeling (Peking University Sixth Hospital, St. Judy
Children’s Research Hospital, USA, etc.)

» Establish a set-valued model of schizophrenia and leukemia

» Construct a more effective statistical verification method

W Radar target recognition (Academies of Astronautics)

» Establish a set-valued model of radar target recognition

» Construct an intelligent recognition algorithm based on quantized estimation

m Satellite control (Beijing Institute of Control Engineering)

» Construct an estimation algorithm under saturation constraints

» Realize the joint control of the auto-disturbance position and attitude of the towed satellite



Applications of quantization identification

W Association analysis of gene based on gquantized estimation [SMMR 2019 et al ]

» Acute lymphocytic leukemia (St. Judy Children's Research Hospital)
» 2024 cases of European descent: statistical p-value 0.000996
» Found a new site rs2893881 in ARID5B gene

Table 4. Single nucleotide polymorphisms (SNPs) associated with ALTL susceptibility in White and

Hispanic

‘White Hispanic
SNP MA LG SV MA LG SV
rs10821936 C 8 341020 2. 7010720 T 1.03=107 6.99=10%
rs10821938 A 147=101 B.E9x1015 C 4 27=107 2.74=107
rs10994082 G 2 66=107 2.41=107 G 3.81=10° 3.47=10%
rs7087125 T 922x10% B.76=10°¢
rs 7896246 A 1.03=10"* 3.32x10720 G 2 77=107 2.24=107
e A A 1.50=1013 9 851014 C 2.09=107 1.35=107
rs28938E1 G 0.000996

MA- minor allele.

Construct a new and more effective statistical verification method

More reasonable assumption and more reliable for small sample size



Applications of quantization identification

I ®m Radar target recognition based on quantized identification method I \
» The target type is "'true, false", generating quantized data £ ‘
» Establish a model of the characteristics of radar data and the authenticity of the target

» Obtain the main radar characteristics and recognition rate

Covariance of | Experiment Fuzzy Evidential Quantized
noise number Classification Reasoning identification

0.96 0.93 0.99
2 0.91 0.94 0.99
1 0.79 0.89 0.97
0-> 2 0.73 0.91 0.98
1 0.71 0.79 0.93

! 2 Q) 0.85 D

Compared with other methods, the algorithm is still reliable at low signal-to-noise ratio

I The required data size is small; The results can be explained. I



Kalman filter with quantized data



Stochastic approximation with sign-error

Sign-error algorithm (binary reinforcement (BR) /sign algorithm):

Cost function:

L(H) — ]E|yk _ HTXklz Cost function:

L(H) = Elyx — H Xl

Recursive algorithm (SA type): Ly(H) = —E(X,sign(y, — HTX},))
— T : : :
Hy+1 = Hy + ap Xy (Yk — Hy Xk) Recursive sign algorithm
where Zk A = 00,4 — Oask — 0. Hk+1 = Hk + akasign(yk — H,T;Xk)
A. Gersho, E. Eweda, sign-error algorithms with
IEEE fellow IEEE fellow expanding truncation bounds
1964 1972 1984 1989 1991 2003 2012 2015 2017
—
M. Aizerman A. Gersho, E. Eweda, H. F. Chen B. Csaji K. You W. Zhao
& E. Braverman IEEE fellow |IEEE fellow & G.Yin, & E. Weyer & H. F. Chen
& L. Rozonoer IEEE fellow & R. Tempo
& F.Dabbene,
Found BR algorithm Convergent under i.i.d. Convergent under M- Convergent under Applied to binary measurements with i.i.d. inputs

signals dependent signals stationary ergodicity



Kalman filter with quantized innovation

4

® Model: x(n) = A(n)x(n — 1) + w(n) ® Quantizer: | = v 1 <e(n) <y
y(n) = h' (n)x(n) 4+ v(n)
® State estimation: — ) a<en) <z
e =00 —a<dn <a
X(n|n) := E[x(n)|bo.x] :/ x(n)p[x(n)|bo.,|dx(n) —z1, —Z2<¢€(n) < -7
R . .
® Results: | —2n. €(n) < —Zn

* General multi-level quantized innovation KF

* Optimal MLQ-KF w.r.t. quantization levels ® Assumption: Innovation is approx. Gaussian

* Optimal filter is in terms of Riccati difference eq. 5 -

* Convergence of the MLQ-KF is established. e(n) = yn) - gnijn — 1)

* For 1-hit trans. case, better performance than J(njn — 1) = h' (n)x(nln — 1)
the sign of innovation filter given (Ribeiro, 2006)

*Sinopoli et al, 2004; *Ribeiro et al, 2006; *K.Y. You, L.H. Xie, S.L. Sun & W.D. Xiao, IFAC Congress, 2008



Quantized filtering

® Model:
x(n) =A(n)x(n—1) + w(n)
y(n) = h' (n)x(n) +v(n)
® Quantized the innovation:
e(n) = y(n) — j(nln - 1)

(2N, 2N < €(n)
ZN—1, ZN—1 < €(n) < Zy

o 21, Z1 < E(ﬂ) < Z9
b(n) = 4 0, —zZ1 <€n) <z
—Z1, —2Z9 < E(ﬂ) S —2Z1

| —2n, €(n) £ —2ZN

* K. You, L. Xie, S. Sun & W. Xiao, IFAC, 2008

® Kalman filter with quantized innovation:

x(nln — 1) := E[x(n)|bg.n—1] = A(n)x(n — 1jn — 1)
§(nln — 1) := Ely(n)[bom—1] = hT (n)s(nln — 1)

P(njn—1) = An)P(n—1n—1)A* (n) + W(n)

fn(n)P(njn —1)h(n)

X(nln) = x(n|n —1
(n|n) = x(n| ) VT (n)P(n|n — 1)h(n) + o2(n)

P(n|n) = P(n|n — 1) — 22 [ z’fj _‘i’afkﬂﬂ
P(n|n — 1)h( )h' (n)P(n|n — 1)

““hT(n)P(nfn — 1)h(n) + 02(n)

Frn) = ngn b(n)) Iy (b(m)) 2L~ o)

Oz — Azpig




Kalman filter with 1-level quantizer

® Model: x(n) = A(n)x(n—1) +w(n)

® Quantizer:
y(n) = h' (n)x(n) + v(n)

21, Z1 <€(n)
%(n|n) == Ex(n)|bom] = / x(n)plx (1) [boun ] dx () b(n):=40, —%<eln) <z
e —z1, €(k) < =2
® Kalman filter: __— \/%69329(%)
%(n|n) =%(nln — 1) + fi(n) fi(n) == gZE—"‘:)Sm’b(b(m) o
P(n|n — 1)h(n) \»fm ¢(x)dr
VhT (n)P(n|n — 1)h(n) + 02(n)
P(nn)=P((n|ln —1) — %jfz)

>< P(n|n _ 1)h(n)hT(n)P(n‘n . 1) *KY YOU, LH Xle, SL Sun & WD );lao,
h7 (n)P(n|n — L)h(n) + o2(n) IFAC Congress, 2008

* For the case with1-bit transmission, a better performance is obtained compared with that of
the sign-innovation filter given (Ribeiro, 2006)



Adaptive control with binary-valued data

e Adaptive control with empirical measure based identification

e Adaptive control with recursive projection identification



Adaptive control with binary-valued data

_ T
® Model: {y(:) _ ;p o Where -, =co/2 and = =(1- F(-nc+ MY ll2/21)) /2
s(k) = {y(k)=C} IL)_t(htl) =l = [s(tm).....s((I=Dm+1)]"
9t ="y s e Frlesaziog. <I>(_I_ [6(tm).....o (1= Vm + 1))

® Goal: y(k) - y*: y* is m-periodic signal Control: g (g(1)) = Y@(g(t))—l

where Y = T([y;, -, Vi])

® Two-scale adaptlve Control Property: asymptotically efficient estimate;

nmimim

h ol ling time Jfi,
identification scale 2 T T T T 14

Estimation: 2

1 g(t)—1
{f, —_ : Z S(f)
' I=g(t—1) . A

Fg(t) =@ (g(t—1)" (C = F (&) 1,

B(g(1)) = {(??(W)% i [det (O (g()] > 1
O (g(t—1)), otherwise.

mean square convergence rate O (%)
‘ ‘ ‘ ‘ ‘ ‘ | \ \ ‘ ‘ asymptotically optimal control;

Attimel = g(t)+1,..., gt +1) =1, let

0 50 100 150 200 250 300 350 400 450 500
k

O(l) = O (g(t)). Trajectory of £(6 — 6)° in one holding time System output with tracking target y* = 7
*Y. Zhao, J. Guo & J. F. Zhang, IEEE TAC, 2013



Adaptive control with binary-valued data

e Adaptive control with time-varying threshold Mean square convergence rate

Estimation: E@76,) = 0 G)
O(t+1) =T (é(t) - %CDT(t)(T(CT —dT(HH()) - S(t))) if f(C— o ()Y) > [ > 55
Control: Asymptotically optimal control;

®(t+1)=Y0(t+ 1) A (@(t+1)@T(t+1)>>8
{ - > 0} lim E(Y} o Y*)T(Y} o Y*) — L0'2

+_I t—00
V& {Amin<@(t+1)@T (t+1))<so}
T 15
where F(x) = (F(x(l)), ---,F(x(n)))
\;I\évo—lscalihalgoritt:bm
Property: } : pep
The designed input satisfy ||®,| = ||| < M. =
and g

OI'®, > 61, fort =1.2,....

*T.Wang, M. Hu & Y. Zhao, IEEE SMC, 2019 0 @ﬁéoﬂﬁ T e

Time Index k



Consensus with guantized data

® Output feedback consensus

® Consensus with quantized inputs



Output feedback consensus with finite-level quantization

MOdel: {xi(t -+ 1) = Axi(t) + Bul-(t)
yi(t) = Cx;(t)
Communication network: ¢ = (V, €, A)
Communication protocol set:
H(y,a a, L, L, G) ={H; =(0;,¥;),i=1,,N,j €N},
y € (0,p), @ a, € (01],L,L, €EN,G € B "
Quantizer:
kp,kp —p/2 <y<kp+p/2,k=01,---,M—1,
Mp,y = Mp —p/2,
—Qpu(=¥),y < —p/2.

Control protocol set: |
U(Lg) = {U(K),K € B]'*"},
Control goal: locally/globally consensus

Forany C;,C,,C3,3 HeE H,U € U, s. t., for any
x;(0) € B, %io € BC,.Uio € Bc,, the closed-loop
dynamic system (A4,B,C,G) achieves:

lim (x;(6) = 2;:(6)) = 0, lim (x;(®) — x;(0)) = 0.

Hp, Lg) =

Qp,M (3’) =

e

\I’j,'

N\

Wi k(- ...,)

Agent i 0,

7

—

Network

(£;(0) = £50,1;(0) = 1o,

sj(t) = Qa,L(yj (t—-1 —Cx(t— D/yt 1),
=1 %(t) =A%t -1 + Yt Gs;(t) + B (t — 1),
Su,j () = Qe (wi(®) — ;(t = 1 /y*1),

L) =t — 1) +ysy,;@©),

%ji(0) = Xjo, U;;(0) = Ty,
W = %(t) = A%t — 1) +y 7 1Gs;(t) + B (t— 1),
(t) =a;(t—1) + Vt_lsu,j(t).

U(K) = {ul(t) = KZ » au(y?ﬂ(t) - fl(t)),] = 1’...’N}
JENG



Output feedback consensus with finite-level quantization

Assumption:
A1) There exists K such that the eigenvalues of A — 1;(£L)BK,i = 45— Stteofeachagent [T | 5| Estimation error of each agent [~
2,---, N are all inside the open unit disk of the complex plane. o 1
A2) (4, C) 1s detectable.
Conclusion:
» Sufficiency: |

Al)+A2)

U

(A, B, C,G) is locally consensus for H (1, +o0) & U(+0);

b

+Uniform boundedness of the quantization errors; vstep LR
» Necessity: . .
1) (A4,B, C,G) is locally consensus for H (p, L;)and U(Ly) Y.Meng, T. Li & J.F. Zhang, IEEE TAC, 2017
with p € (0,1),Lg > 0,Lg > 0; | Highlight:
+Uniform boundedness of the quantization errors;

1) Unstable and high-order system + unmeasurable states

U 2) Dual goals of communication (finite data rate) and control
Al)+A2) 3) Sufficiency + necessity
2) (A, B, C, G) is globally consensus for H (1, 400) and U(+0);
+Uniform boundedness of the quantization errors; Other case:
U Case 1: switching and frequently connected commun. network
A1)+A2) | *Y. Meng, T. Li & J.F. Zhang, SICON, 2017

Case 2: jointly connected communication network

» (A,B,C,G) is globally consensus for H (1,+0) and U(+ ) %Y. Meng, T. Li & J.F. Zhang, LIRNC, 2015

with accurate communication & Al)+A2)



Consensus with quantized inputs

Example of input sets with limited precision:

Switch and mechanical arm
Kalman pointed out that

R"f‘?jq“ Eann sufir—1¥ the input set with limited precision= limit cycles or chaos.
6A 250V AC .
] / Highlight:
| 1) Single agent = multi-agent
. — 2) limitless precision = limited precision
; N = = 3) Sufficiency + necessity
A\ | 3P ON-ON
‘ i o~oo
Control protocol set:
Model: x;(t+ 1) = x;(t) + u; (t) C={U(f),NU = {u;(t),i=1,-,N},Q.(-):R>Uh € (0,2/Ay)}
. . . _ N
Communication network: § = (V,&,A) where w(t) =Q (hz,zl aij (xj(t) —xi(t))> and Ay = max 2;(£)

Quantizer (finite level): Q1 (y) Case 1: logarithmically distributed input sets

The input set with limited precision: ie., U= {tu, k=1.2--}u{0} with g, = p*u,,p € (0,1)
|

Control goal: practical consensus QL ) = 0,y =0,
tli_m x;(6) — x;(D)| < e —Q.(=¥),y <0.

U= {+ur, k=1, ,L}u {0}

l l
l P Ho P Ho 7 _
p uo; 1+B S y < 1_3 ,l -_ 1,2, ) 1_p
and f = —
1+p



Consensus with quantized Iinputs

Conclusion: 1 o
1) G is connected,; i =1
2) |xl(0)| < Cx; g : -

3) B < A,/ Ay; A =
U
consensus 4
exponentially - -

time

Trajectory of the synchronization errors

(20 T

S

o Agent 1

t —t— Agemt2

@ !'— + Agent3

[

ol e Synchr: p

=

©
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[T v

= L] 10 15 20 25 30 35 40 45
— t/s

I—

*Y. Meng, Z. Wang, Assembly Automation, 2016

-

Case 2: uniformly distributed input sets
e, U ={+u, k=1,--L}uU {0} with yu, = kw,p € (0,1)

kw ko —w/2<y<kw+w/2,k=01,-,L—1,

QL) ={Llw,y =Lw—w/2,
—QL(=y),y < —w/2.
Assumption:

Al) G is connected,
A2) There is known constant C, such that |x;(0)| < C,;

Conclusion:
. ] 8d*VNCy , VNd* 1
» Sufficiency: under A1)-A2) and L > St + L2
4812
© S TN+

U
practical consensus with ¢

» Necessity: under A1)-A2) and practical consensus with &,
lm|x(0) -z <e
U
4el,

© SN+ )
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®\\Vhat are the problems worth studying



Identification and adaptive control with quantized data

e Parameter identification with quantized data
v’ Bisection method & param. decoupling for noise-free/bounded noises
v" Likelihood method for the case with stochastic noises
v Expectation maximization method
v Empirical measure method with/without truncation

v" Recursive projection algorithm:
* Stochastic approximation: scalar step, known distr. function

* Sign-error: scalar step, time-varying threshold, unknown distr. funct.

* CRLB based: matrix step depending on estimate, asymp. efficiency
* Quasi-Newton: matrix step, weak persistent excitation

e Stochastic approximation and state estimation
with quantized data

e Adaptive control with binary-valued data
v Adaptive control with empirical measure based ident.
v Adaptive control with recursive projection ident.

e Consensus with quantized data
v’ Output feedback consensus
v Consensus with quantized inputs

* Persistent excitation, periodic input,
scaled periodic input, weak
excitation, ......

* Convergence, convergence rate,
asymptotic efficiency, asymptotic
optimality, ......

® Open questions
v Asymptotically optimal algorithm
v’ State space model
v MIMO systems



Feature and difficulty on quantized system research

W Research on quantized systems Is systematic

» Wide-range: estimation, identification, control, et al

» General framework: a research framework can be established parraleling
to the one with precise output

» Significancy: essentially reduce the requirements on measurements

® Difficulty in modelling and control of quantized systems

» Algorithm design: less available information, strong nonlinearity

» Theoretical analysis: the matrix is not independent, non-exchangeable
and contains unknown parameters, etc.



e Basic gquestion:

In order to reach a desired modelling or control goal, how much information
do we really need ?

e It is involved in unified design of control and communication,
and needs to develop “control-based information theory”

e It Is a complex function in terms of task, constraint, complexity
v'Task: modeling, identification, or control, ... ...
v'Constraint: dynamic, measurement, cost, time, bandwidth, processing, ... ...
v'Complexity: Computation, implementation, analysis, ......
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