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Need of practical systems

Need of the development of control theory

Why do we consider quantized systems



Quantized systems: binary-valued data

 Internal combustion engine air-fuel ratio (AFR) control

Only when engine AFR is 14.7, the toxic tail gas can be effectively 

cleaned by the catalyst. Thus, accurate control of AFR is very important. 

 Front oxygen sensor (usually wide range type): detects the air-

fuel ratio

 Rear oxygen sensor (wide range or switch type): detect the 

conversion efficiency of the catalyst & the operation of upstream 

oxygen sensor.
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 Internal combustion engine air-fuel ratio (AFR) control

Measuring principle: under high temperature and 

platinum Catalysis, the oxygen concentration difference 

on both sides of zirconia increases, the corresponding 

electromotive force difference increases.

Only when engine AFR is 14.7, the toxic tail gas can be effectively 

cleaned by the catalyst. Thus, accurate control of AFR is very important. 

 Front oxygen sensor (usually wide range type): detects the air-

fuel ratio
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Quantized systems: binary-valued data

 Internal combustion engine air-fuel ratio control

 Binary sensor: Whether the excess air coefficient 𝝀 is 1

 Control goal: Excess air coefficient 𝝀 is 1, or AFR is 14.7

 How to realize more accurate AFR control with switching oxygen sensor (less used in industry now) 

 How to use the rear oxygen sensor (mostly switch type) to diagnose the front sensor and catalyst 

 How to realize good AFR control with tilt back sensor in fault mode

Kang Song, Tianyuan Hao, and Hui Xie. "Disturbance rejection control of air–fuel ratio with transport-delay in engines." Control Engineering Practice 79 (2018): 36-49.

 Transport-delay:

Neng: 发动机转速
Vem : 排气管容积
Cex : 排气体积流率

 Mixed dynamics: 

𝑚𝑒𝑚: 排气管中的废气量

 𝑚𝑒𝑥: 废气的质量流率
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Quantized systems: binary-valued data

Excitation / Inhibition 

Caianiello model

McCulloch-Pitts model

𝑦𝑖 = 𝑆  

𝑗=1

𝑛𝑖1

𝑤𝑖𝑗𝑥𝑖𝑗 + 

𝑗=1

𝑛𝑖2

 𝑤𝑖𝑗  𝑥𝑖𝑗 − 𝐶𝑖

𝑥𝑖(𝑡 + 1) = 𝑆  

𝑗=1

𝑁

 

𝑟=0

𝑡

𝑤𝑖𝑗
𝑟 𝑥𝑗(𝑡 − 𝑟) − 𝐶𝑖

 Hopfield model

 Nagumo-Sato model

 Aihara model

 ……

The i-th neuron's M-P model, 

the basis of many NN works



 Wireless sensor networks(WSNs) 

 Lower quality sensor

 Limited energy

 Limited bandwidth

 …..

Quantized systems: quantized data

Low cost and low power consumption WSNs 

is of great importance in military surveillance, 

environmental monitoring, healthy care, 

home & other commercial applications 

(Akyildiz et al, 2002)

Energy to 

transmit 1 bit

Energy for  

1000 -- 3000

operations

≈

(Shnayder et al, 2004)

 Energy efficient algorithm for network coverage (Cardei & Wu, 2004; Krasnopeev et al, 2005) 

 Distr. estim. & KF (Wong & Brockett, 1997; Reibeiro & Giannakis, 2006; K.Y. You et al. 2008)

 Consensus of networked systems (Aysal et al, 2008; Carli et al, 2010; Li et al, 2011; Meng et al, 2016)

 Decentralized detection (Xiao & Luo)  



● Binary quantization: One-threshold

● Multi-layer quantization: Multi-threshold quantization

● Fixed threshold quantization

● Time-varying threshold quantization

● Uniform quantization 

● Non-uniform quantization

● Finite threshold quantization

● Infinite threshold quantization

● Scalar quantization 

● Vector quantization

● Logarithmic quantization

Classification of quantized systems



• Accurate data are hard to get, only coarse data or quantized data are available; 

• Not economic to use accurate sensor/data, no need to use accurate data; 

• Due to bandwidth limit, only quantized data can be got；……



𝑠 = 𝑆(𝑦) =

𝛼1, if 𝑦 > 𝐶1;
𝛼𝑗 , if 𝐶𝑗 < 𝑦 ≤ 𝐶𝑗−1,

𝑗 = 2,3, . . . , 𝑚 − 1;
𝛼𝑚, if 𝑦 ≤ 𝐶𝑚−1.

Feature of quantized systems

𝑞𝑘 =  
1, if 𝑦𝑘 > 𝐶;
0, if 𝑦𝑘 ≤ 𝐶.

 Binary-valued sensor  Set-valued sensors

 Wide practical background: 

 Sensor networks  

 Integrated circuits

 Network communication 

 Mechanical systems  

 Smart material  

 Automotive

 Chemical engineering

 Biology systems, …

𝑦𝑘 ≥ C or 𝑦𝑘 < C

 Infinite threshold quantization

𝑠𝑘 =

⋮,
−𝜀, 𝑦𝑛∈ −1.5𝜀, −0.5𝜀 ,

0, 𝑦𝑛∈ −0.5𝜀, 0.5𝜀 ,

𝜀, 𝑦𝑛∈ 0.5𝜀, 1.5𝜀 ,
⋮,
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 Binary-valued sensor  Set-valued sensors

 Wide practical background: 

 Sensor networks  

 Integrated circuits

 Network communication 

 Mechanical systems  

 Smart material  

 Automotive

 Chemical engineering

 Biology systems, …

𝑦𝑘 ≥ C or 𝑦𝑘 < C

 Infinite threshold quantization

𝑠𝑘 =

⋮,
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𝜀, 𝑦𝑛∈ 0.5𝜀, 1.5𝜀 ,
⋮,

 Wide Features: Less information, high nonlinearity

 Only the relationship of the concerned signal and the threshold 

can be obtained, not the value of the signal.

 Different from sampling, for sampled data, the data is accuracy.

 Different from the existing works based on quantization 

filtering and estimation,  where some closed-loop conditions are 

required on quantization error, which depend on control and 

the performance of the closed-loop systems.



Need of practical systems

Need of the development of control theory

Why do we consider quantized systems



Nyquist-Shannon sampling theorem

When converting from an analog signal to digital, the sampling frequency must 

be greater than twice the highest frequency of the input signal, in order to be able 

to reconstruct the original input signal perfectly from the sampled version. 

(http://www.fact-index.com/n/ny/nyquist_shannon_sampling_theorem.html)

It tells us: in order to perfectly reconstruct an analog signal from its 

sampled version, how many sampled data are really needed.  

Get a desired modelling and control goal with as less data as possible 

Continuous processes: T. Kailath, 1980; L. Arnold, 1974; J.C. Doyle et al., 2013; …… 

 Sampling data:  Nyquist-Shannon sampling theorem, periodic/non-periodic sampling, …… 

Quantized data:  R.E. Curry, 1970; A. Gersho & R.M. Gray, 1991; L.Y. Wang et al., 2003; 

M.Y. Fu et al., 2009; Godoy et al., 2011; K.Y. You, 2015; Z.P. Jiang & T. Liu, 2018; ……

Event-driven systems:  K. Johansson et al., 2012; G. Feng, 2013; Z.P. Jiang, 2015; ……

How to use less data to reach a desired modelling and control goal ? 
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Plant 

 𝑥 = 𝐴𝑥 + 𝐵𝑢

Control 

Key assumption：States are known!

State-feedback control

Pole-placement,

Stabilization,

LQ control,

Robust control, etc.

𝑢 = 𝐾𝑥



Plant 

 𝑥 = 𝐴𝑥 + 𝐵𝑢

Control 

Key assumption：States are known!

State-feedback control

Pole-placement,

Stabilization,

LQ control,

Robust control, etc.

𝑢 = 𝐾𝑥

Key assumption：Outputs are known!

Output-feedback control

Static output-feedback,

Dynamic output-feedback, 

……   

Plant 

 𝑥 = 𝐴𝑥 + 𝐵𝑢,
𝑦 = 𝐶𝑥 + 𝐷𝑢;

Control 

𝑢 = 𝐾𝑦;

 
  𝑥 = 𝑁𝑦 + 𝐹𝑢,
𝑢 = 𝐾 𝑥 + 𝐻𝑦;



Filtering, identification, adaptive control



Basic problems of quantized systems 

System identification 

 Identifiability

 Identification methods

 Estimation error, conv. rate

 Input/quantizer design

 Uncertainty influence on est. error, 

conv. rate, computing complexity

 (Asymptotic) Efficiency

 ……   

 How to realize satisfactory identification and control with quantized data?
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 Identifiability
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 Estimation error, conv. rate

 Input/quantizer design

 Uncertainty influence on est. error, 

conv. rate, computing complexity

 (Asymptotic) Efficiency
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State estimation

 State estimation

 Convergence performance

 Computation complexity

 Threshold’s influence on est. 

error,  conv. rate, computing 

complexity

 ……   

Control synthesis 

 Stabilization

 Robust control

 Output-feedback

 Adaptive control

 Consensus control

 ……   



Identifiability 
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 Binary set-valued sensor

Threshold  

kk uby  =
11 / uyb ：unknown is When ky



Identifiability 

 Guess a word 

 Given a book of 400 pages, with no more than 1000 words on each page.    

(Thus, totally there is no more than 0.4 million words in the book.)  

 You can choose a word from the book randomly, remember it by yourself

and do not tell me which it is. 

 I can get the word that you choose by asking you no more than 20 questions,

and you can answer each question only by “Yes” or “No”. 

 Using binary observations to get good (even exact) estimation
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Parameter identification with quantized data

 Bisection method and parameter decoupling

 Likelihood method

 Expectation maximization method

 Empirical measure method with/without truncation

 Recursive algorithms:  

Stochastic approximation, sign-error,  CRLB, Quasi-Newton based



Parameter identification with binary-valued data

 Model:

 Goal:

𝑦 𝑘 = 𝑃 𝑦, 𝑢, 𝜃 + 𝑑 𝑘 ,

𝑠(𝑘) =  
0, 𝑦 𝑘 > 𝐶;

1, 𝑦 𝑘 ≤ 𝐶.

𝑦(𝑡) =  

𝑖=1

𝑛

𝑎𝑖𝑦(𝑡 − 𝑖) + 

𝑖=0

𝑛

𝑏𝑖𝑢 𝑡 − 𝑖 + 𝑑 𝑡

𝑎𝑖 , 𝑏𝑖−unknown parameters, 𝑑(𝑡) − noises

ARMAX：

Wiener system:

𝑥(𝑡) =  

𝑖=0

𝑛−1

𝑎𝑖𝑢(𝑡 − 𝑖) , 𝑦(𝑡) =  

𝑖=0

𝑚−1

𝑥𝑖(𝑡)𝑏𝑖 + 𝑑(𝑡)

ℎ

𝑑

𝑦𝑥

L NL𝑢 sensor 𝑠

 Hammerstein system:

𝑦 𝑡 =  

𝑖=0

𝑛−1

𝑎𝑖𝑥 𝑡 − 𝑖 + 𝑑 𝑡 ,

𝑥 𝑘 = 𝑏0 +  

𝑗=0

𝑚−1

𝑏𝑗𝑢
𝑗 𝑡 , 𝑏𝑚 = 1.

Estimate the unknown parameters 

by using binary-valued data. 



Identification with binary-valued data
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Deterministic framework

Model:  

Method: Bisection + Parameter decoupling       



Deterministic framework

Model:  

Method: Bisection + Parameter decoupling       

Model:  

 Bisection method

𝑢𝑘 =
2𝐶

𝜃𝑘−1+𝜃𝑘−1
,

𝜃𝑘 = 𝜃𝑘−1, 𝜃𝑘 =
𝐶 − 𝜀

𝑢𝑘
, 𝑖𝑓 𝑠𝑘 = 0,

𝜃𝑘 =
𝐶 + 𝜀

𝑢𝑘
, 𝜃𝑘 = 𝜃𝑘−1, 𝑖𝑓 𝑠𝑘 = 1,

where 𝜃 ∈ 𝜃0, 𝜃0 , 𝑑𝑘 ≤ 𝜀 ≤ 𝐶, 𝑛 = 1

Algorithm properties

 the irreducible relative error   

 the time complexity  

 exponential convergent for noise-free case

* L. Y. Wang, J. F. Zhang & G. Yin, IEEE TAC, 2003

*M. Casini, A. Garulli & A. Vicino, CDC, 2007;

*M. Casini, A. Garulli and A. Vicino, IEEE TAC, 2011

Follow-on work: 

𝒚 𝒕 = 𝜽𝒖 𝒕 + 𝒅(𝒕)



Stochastic framework: Likelihood method

 Likelihood function 

The solution is

where

 Difficulty: there is no explicit solution!



Cram  𝐞r-Rao lower bound:

 The ideal algorithm (CRLB based):

 Likelihood function:

 The solution:

 Difficulty: no explicit solution!



Expectation maximization method

* B. Godoy, G. Goodwin, J. Aguero, D. 

Marelli & T. Wigren, Automatica, 2011

* Y. L. Zhao, W. J. Bi & T. Wang, SCIS, 2016

 Likelihood function:



Empirical measure method with set-valued data

Empirical measure method:

𝜉𝑁 =
1

𝑁
 𝑙=1
𝑁 𝑆𝑙 =

1

𝑁
 𝑙=1
𝑁 𝑰{𝐷𝑙≤𝐶1−𝛷𝜃} → 𝜉 = 𝑭(𝐶1 − 𝛷𝜃),

Assumption: 𝐶, 𝐹 ∙ are known

 𝜃𝑁 = 𝛷−1 𝐶1 − 𝑭−1 𝜉𝑘 → 𝜃.

where 𝐹 ∙ is the PDF of noises, 𝛷0 = 𝜑1, ⋯ , 𝜑𝑛
𝑇,

φk is the n-period input; 

Algorithm properties:

Convergence:

Convergence rate

Efficiency:

* L. Y. Wang, J. F. Zhang & G. Yin, IEEE TAC, 2003

* Y. L. Zhao,, L. Y. Wang, G. Yin & J. F. Zhang, Automatica, 2010



* Y. L. Zhao, J. F. Zhang, L. Y. Wang & G. Yin, SIAM J. Control & Optim, 2010

Empirical measure method (with truncation)

𝜉𝑘
𝑖 =

1

𝑘
 𝑙=1
𝑘−1 𝑠𝑙𝑛+𝑖,

𝐿𝑘 = 𝐶 − 𝐺(𝜉𝑘
1),⋯ , 𝐶 − 𝐺(𝜉𝑘

𝑛)
𝑇

,

𝐺 𝜉𝑘
𝑖 =

𝑧, 𝜉𝑘
𝑖 < 𝑧,

𝐹−1 𝜉𝑘
𝑖 , 𝑧 ≤ 𝜉𝑘

𝑖 ≤ 1 − 𝑧,

𝑧, 𝜉𝑘
𝑖 > 1 − 𝑧,

 𝜃𝑘 = 𝛷−1𝐿𝑘.

where z is chosen by

and 𝜁𝑗 depends on the true parameter. 
Taylor expansion;

Uniformly bounded of the probability   

density function ;

Algorithm properties:

Convergence:

 𝜃𝑘 → 𝜃,w. p. 1

Convergence rate

Main Idea of the proof:

The true parameter 

range must be known



Algorithm properties:

Mean square convergence rate

Main idea of the proof:

* Y. Zhao, T. Wang & W. Bi, IEEE TAC, 2019

Empirical measure method (without truncation)

𝜉𝑘
𝑖 =

1

𝑘
 𝑙=1
𝑘−1 𝑠𝑙𝑛+𝑖, 

𝜁𝑘
𝑖 =  

1/2, 𝜉𝑘
𝑖 = 0,

𝜉𝑘
𝑖 , 0 < 𝜉𝑘

𝑖 < 1,

1/2, 𝜉𝑘
𝑖 = 1,

𝐿𝑘 = 𝐶 − 𝐹−1(𝜁𝑘
𝑖 ),⋯ , 𝐶 − 𝐹−1(𝜁𝑘

𝑖 )
𝑇

,

 𝜃𝑘 = 𝛷0
−1𝐿𝑘.

The convergence rate is at the same 

order as that of accurate measurements



* J. Guo & Y. L. Zhao, Automatica, 2013  

* T. Wang, M. Hu & Y. L. Zhao, CAC, 2018

 Stochastic approximation type: 

Convergence：mean-square and almost surely 

convergent, i.e., 

 𝜃𝑘+1 = ΠΘ  𝜃𝑘 +
𝛽𝜑𝑘
𝑟𝑘+1

𝐹 𝐶 − 𝜑𝑘
𝑇  𝜃𝑘 − 𝑠𝑘+1 ,

𝑟𝑘+1 = 1 + 
𝑖=1

𝑘

𝜑𝑖
𝑇𝜑𝑖 .

lim𝑘→∞E(  𝜃𝑘 − 𝜃)𝑇(  𝜃𝑘 − 𝜃) = 0

lim𝑘→∞
 𝜃𝑘 = 𝜃, a.s.

Difficulty:

E(  𝜃𝑘 − 𝜃)𝑇(  𝜃𝑘 − 𝜃)=O(1/𝑘)

where ΠΘ (∙)is the projection from ℝ𝑛 to Θ, defined as

ΠΘ 𝜉 = arg min
𝜁∈Θ

𝜉 − 𝜁 , ∀𝜉 ∈ ℝ𝑛

 Assumption: The inputs 𝜑𝑘 , 𝑘 = 1,2,⋯ satisfy

sup
𝑘≥1

𝜑𝑘 ≜ 𝑀 < ∞. Besides, 

1

𝑁
 

𝑖=𝑘

𝑘+𝑁−1

𝜑𝑖𝜑𝑖
𝑇 ≥ 𝛿2𝐼.

Cross item

Convergence Rate：

Recursive projection algorithm



* Y. Wang, Y. Zhao, J. F. Zhang & J. Guo, submitted to Automatica, 2021

 Sign-error based: 

The threshold of binary quantizer is design as time-varying 

threshold 𝜑𝑘
𝑇  𝜃𝑘,  i.e.,

𝑠𝑘+1 = 𝐼{𝑦𝑘+1>𝜑𝑘
𝑇 𝜃𝑘}

− 𝐼{𝑦𝑘+1<𝜑𝑘
𝑇 𝜃𝑘}

Then the algorithm is

 
 𝜃𝑘+1 = ΠΘ  𝜃𝑘 +

𝛽𝜑𝑘

𝑟𝑘+1
𝑠𝑘+1

𝑟𝑘+1 =  𝑖=1
𝑘 𝜑𝑖

𝑇𝜑𝑖

where ΠΘ (∙)is the projection from ℝ𝑛 to Θ, defined as

ΠΘ 𝜉 = arg min
𝜁∈Θ

𝜉 − 𝜁 , ∀𝜉 ∈ ℝ𝑛

 Assumption: The inputs 𝜑𝑘, 𝑘 = 1,2,⋯ satisfy

sup
𝑘≥1

𝜑𝑘 ≜ 𝑀 < ∞, and  

1

𝑁
 

𝑖=𝑘

𝑘+𝑁−1

𝜑𝑖𝜑𝑖
𝑇 ≥ 𝛿2𝐼.

 Properties: 

 For noise-free case with PE condition, 

square convergence rate is O
1

𝑘2
;

 For bounded noise case, an upper bound 

of the estimation error is given in terms 

of  the noise bound and the lower bound 

of the PE condition. 

 For stochastic noise case, mean-square 

and almost surely convergence are 

obtained, mean square conv. rate is 

O
1

𝑘
.

Recursive projection algorithm



* H Zhang, T. Wang & Y. Zhao, IEEE SMC, 2019

 CRLB based:  

where 𝛼𝑘 =
 𝑓𝑘

 𝐹𝑘 1−  𝐹𝑘
, 𝛽𝑘 =

 𝑓𝑘
2

 𝐹𝑘 1−  𝐹𝑘
, 

 𝑓𝑘 = 𝑓 𝐶 − 𝜑𝑘
𝑇  𝜃𝑘 ,  𝐹𝑘 = 𝐹 𝐶 − 𝜑𝑘

𝑇  𝜃𝑘

Convergence Rate:

the mean square convergence rate is O
1

𝑘

Asymptotically efficient:

where 

is the CR lower bound with 

 𝜃𝑘+1 = ΠΘ  𝜃𝑘 + 𝛼𝑘𝑃𝑘𝜑𝑘 𝐹 𝐶 − 𝜑𝑘
𝑇  𝜃𝑘 − 𝑠𝑘+1

𝑃𝑘+1 = 𝑃𝑘 −
𝛽𝑘𝑃𝑘𝜑𝑘𝜑𝑘

𝑇𝑃𝑘

1 + 𝛽𝑘𝜑𝑘
𝑇𝑃𝑘𝜑𝑘

Assumption: The inputs 𝜑𝑘 , 𝑘 = 1,2,⋯ satisfy

sup
𝑘≥1

𝜑𝑘 ≜ 𝑀 < ∞. Besides, 

lim inf
𝑘→∞

1

𝑘
 

𝑖=1

𝑘

𝜑𝑖𝜑𝑖
𝑇 > 0.

Difficulty of high-order: Compression matrix --

random, correlated, with unknown parameters 

Convergence：
For 1-order system with binary-valued observations, 

the algorithm is mean square convergent, i.e.

Recursive projection algorithm



Convergence：
The estimate is convergent under non-PE 

condition

Quasi-Newton type:

* L.T. Zhang, Y. L. Zhao & L. Guo, submitted to Automatica, 2021

Weak excitation condition: The input sequence 

𝜙𝑘 , ℱ𝑘 satisfies sup
𝑘≥1

𝜙𝑘 ≜ 𝑀 < ∞, a. s., and 

The scalar gains⇒ The matrix gains; PE condition ⇒ Weak excitation condition

where Π𝑄 (∙)is the projection from ℝ𝑛 to Θ given by

ΠΘ 𝜉 = arg min
𝜁∈Θ

𝜉 − 𝜁 𝑄 , ∀𝜉 ∈ ℝ𝑛,

and 𝑥 𝑄 = 𝑥𝑇𝑄𝑥 for 𝑥 ∈ ℝ𝑛.

Recursive projection algorithm

* D. Marelli,  K.Y. You & M.Y. Fu, Automatica, 2013



Parameter identification with quantized data

 Bisection method and parameter decoupling for noise-free or bounded noises

 Likelihood method for the case with stochastic noises

 Expectation maximization method

 Empirical measure method with/without truncation

 Recursive projection algorithm: 

 Stochastic approximation: scalar step, known distr. function

 Sign-error: scalar step, time-varying threshold, unknown distr. function

 CRLB based: matrix step depending on estimate, asymptotic efficiency

 Quasi-Newton: matrix step, weak excitation condition



 Complex disease modeling (Peking University Sixth Hospital, St. Judy 

Children's Research Hospital, USA, etc.)

 Radar target recognition (Academies of Astronautics)

 Establish a set-valued model of schizophrenia and leukemia

 Construct a more effective statistical verification method

 Establish a set-valued model of radar target recognition

 Construct an intelligent recognition algorithm based on quantized estimation

 Satellite control (Beijing Institute of Control Engineering)

 Construct an estimation algorithm under saturation constraints

 Realize the joint control of the auto-disturbance position and attitude of the towed satellite

Applications of quantization identification



Construct a new and more effective statistical verification method

 Association analysis of gene based on quantized estimation [SMMR 2019 et al ]

Acute lymphocytic leukemia (St. Judy Children's Research Hospital)

 2024 cases of European descent: statistical p-value 0.000996

 Found a new site rs2893881 in ARID5B gene

More reasonable assumption and more reliable for small sample size

Applications of quantization identification



 Radar target recognition based on quantized identification method

Compared with other methods, the algorithm is still reliable at low signal-to-noise ratio

Covariance of 

noise

Experiment 

number

Fuzzy 

Classification

Evidential 

Reasoning

Quantized 

identification

0.05
1 0.96 0.93 0.99

2 0.91 0.94 0.99

0.5
1 0.79 0.89 0.97

2 0.73 0.91 0.98

1
1 0.71 0.79 0.93

2 0.70 0.85 0.94

 The target type is "true, false", generating quantized data

 Establish a model of the characteristics of radar data and the authenticity of the target

 Obtain the main radar characteristics  and recognition rate

The required data size is small; The results can be explained.

Applications of quantization identification



Kalman filter with quantized data



Stochastic approximation with sign-error

Cost function:

𝐿 𝐻 = 𝔼 𝑦𝑘 − 𝐻𝑇𝑋𝑘
𝐿𝐻 𝐻 = −𝔼 𝑋𝑘sign(𝑦𝑘 − 𝐻𝑇𝑋𝑘)

Recursive sign algorithm

𝐻𝑘+1 = 𝐻𝑘 + 𝑎𝑘𝑋𝑘sign(𝑦𝑘 − 𝐻𝑘
𝑇𝑋𝑘)

Cost function:

𝐿 𝐻 = 𝔼 𝑦𝑘 − 𝐻𝑇𝑋𝑘
2

Recursive algorithm (SA type): 

𝐻𝑘+1 = 𝐻𝑘 + 𝑎𝑘𝑋𝑘 𝑦𝑘 − 𝐻𝑘
𝑇𝑋𝑘

where  𝑘 𝑎𝑘 = ∞, 𝑎𝑘 → 0 as 𝑘 → 0.

Sign-error algorithm (binary reinforcement (BR) /sign algorithm):

M. Aizerman

& E. Braverman 

& L. Rozonoer

1964 1984 1991 2003

A. Gersho, 

IEEE fellow

E. Eweda,

IEEE fellow

H. F. Chen

& G. Yin, 

IEEE fellow

Found BR algorithm Convergent under i.i.d. 

signals

Convergent under M-

dependent signals

Convergent under 

stationary ergodicity

19891972

sign-error algorithms with 

expanding truncation bounds
A. Gersho, 

IEEE fellow

E. Eweda,

IEEE fellow

Applied to binary measurements with i.i.d. inputs

2012 2017

B. Cs  aji 

& E. Weyer

W. Zhao 

& H. F. Chen 

& R. Tempo

& F.Dabbene, 

2015

K. You



 Model：

 State estimation：

Kalman filter with quantized innovation 

* General multi-level quantized innovation KF

* Optimal MLQ-KF w.r.t. quantization levels

* Optimal filter is in terms of Riccati difference eq.

* Convergence of the MLQ-KF is established. 

* For 1-bit trans. case, better performance than 

the sign of innovation filter given (Ribeiro, 2006)

 Results：

*Sinopoli et al, 2004;     *Ribeiro et al, 2006;     *K.Y. You, L.H. Xie, S.L. Sun & W.D. Xiao, IFAC Congress, 2008



 Model: 

Quantized filtering 

 Quantized the innovation: 

 Kalman filter with quantized innovation：

* K. You, L. Xie, S. Sun & W. Xiao, IFAC, 2008



 Model：

* For the case with1-bit transmission, a better performance is obtained compared with that of 

the sign-innovation filter given (Ribeiro, 2006)

 Kalman filter：

*K.Y. You, L.H. Xie, S.L. Sun & W.D. Xiao, 

IFAC Congress, 2008

Kalman filter with 1-level quantizer 

 Quantizer：



Adaptive control with binary-valued data

Adaptive control with empirical measure based identification

Adaptive control with recursive projection identification



Adaptive control with binary-valued data

 Two-scale adaptive control:

Estimation:

* Y. Zhao, J. Guo & J. F. Zhang, IEEE TAC, 2013

 Model:  
𝑦(𝑘) = 𝜑𝑘

𝑇𝜃 + 𝑑𝑘
𝑠 𝑘 = 𝐼{𝑦 𝑘 ≤𝐶}

 Goal: 𝑦(𝑘) → 𝑦∗: 𝑦∗ is m-periodic signal Control:

where 𝑌 = 𝑇([𝑦𝑚
∗ , ⋯ , 𝑦1

∗])

Property: asymptotically efficient estimate; 

mean square convergence rate O
1

𝑡
;

asymptotically optimal control;

Φ(𝑔 𝑡 ) = 𝑌 Θ 𝑔 𝑡
−1

where

Trajectory of 𝑡  𝜃 − 𝜃
2

in one holding time System output with tracking target 𝑦∗ = 7



Adaptive control with binary-valued data

Adaptive control with time-varying threshold

Estimation:

 𝜃(𝑡 + 1) = ΠΩ  𝜃(𝑡) −
𝛼

𝑡
Φ𝑇(𝑡) ℱ(𝐶1 − Φ𝑇(𝑡)  𝜃(𝑡)) − 𝑠(𝑡)

Control:
Φ(𝑡 + 1) = 𝑌 Θ 𝑡 + 1 −1𝐼

{𝜆min
 Θ 𝑡+1  Θ𝑇 𝑡+1 ≥𝜀0}

+
𝑌

𝜀0
𝐼
{𝜆min

 Θ 𝑡+1  Θ𝑇 𝑡+1 <𝜀0}

where ℱ(𝑥) = 𝐹 𝑥 1 ,⋯ , 𝐹 𝑥 𝑛
𝑇

* T. Wang, M. Hu & Y. Zhao, IEEE SMC, 2019

E(  𝜃𝑡
𝑇𝜃𝑡) = 𝑂

1

𝑡

Asymptotically optimal control;

if

Mean square convergence rate

Property: 

The designed input satisfy

and



Consensus with quantized data

Output feedback consensus

 Consensus with quantized inputs



Output feedback consensus with finite-level quantization



Output feedback consensus with finite-level quantization



Consensus with quantized inputs



Consensus with quantized inputs

Case 2: uniformly distributed input sets

i.e., 𝒰 = ±𝜇𝑘 , 𝑘 = 1,⋯ 𝐿 ∪ {0} with 𝜇𝑘 = 𝑘𝜔, 𝜌 ∈ 0,1

Assumption:
A1) 𝒢 is connected;

A2) There is known constant 𝐶𝑥 such that 𝑥𝑖(0) ≤ 𝐶𝑥;

Conclusion:

Sufficiency: under A1)-A2) and 𝐿 ≥
8𝑑∗ 𝑁𝐶𝑥

𝜀 𝜆2+𝜆𝑁
+

𝑁𝑑∗

𝜆2
−

1

2
,

𝜔 <
4𝜀𝜆2

𝑁(𝜆2+𝜆𝑁)

⇓
practical consensus with 𝜀

Necessity: under A1)-A2) and practical consensus with 𝜀,

lim
𝑡→∞

𝑋 𝑡 −  𝑥 𝑡 1 ≤ 𝜀

⇓

𝜔 <
4𝜀𝜆2

𝑁(𝜆2 + 𝜆𝑁)

𝑄𝐿(𝑦) =  

𝑘𝜔, 𝑘𝜔 − 𝜔/2 ≤ 𝑦 < 𝑘𝜔 + 𝜔/2, 𝑘 = 0,1,⋯ , 𝐿 − 1,
𝐿𝜔, 𝑦 ≥ 𝐿𝜔 − 𝜔/2,

−𝑄𝐿 −𝑦 , 𝑦 < −𝜔/2.

* Y. Meng, Z. Wang, Assembly Automation, 2016

1) 𝒢 is connected;

2) 𝑥𝑖(0) ≤ 𝐶𝑥;

3) 𝛽 < 𝜆2/ 𝜆𝑁;

⇓
consensus

exponentially

Trajectory of the synchronization errors

Conclusion:
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Why do we consider quantized systems

What are the fundamental problems

What are the recent progresses: 

filtering, identification, control

What are the problems worth studying 



Identification and adaptive control with quantized data

• Persistent excitation, periodic input, 

scaled periodic input, weak

excitation, ……

• Convergence, convergence rate, 

asymptotic efficiency, asymptotic 

optimality, ……

 Consensus with quantized data
 Output feedback consensus

 Consensus with quantized inputs

Adaptive control with binary-valued data
 Adaptive control with empirical measure based ident.

 Adaptive control with recursive projection ident.

 Stochastic approximation and state estimation

with quantized data

 Parameter identification with quantized data

 Bisection method & param. decoupling for noise-free/bounded noises

 Likelihood method for the case with stochastic noises

 Expectation maximization method

 Empirical measure method with/without truncation

 Recursive projection algorithm: 

* Stochastic approximation: scalar step, known distr. function

* Sign-error: scalar step, time-varying threshold, unknown distr. funct.

* CRLB based: matrix step depending on estimate, asymp. efficiency

* Quasi-Newton: matrix step, weak persistent excitation

 Open questions

 Asymptotically optimal algorithm

 State space model

 MIMO systems



 Research on quantized systems is systematic

 Difficulty in modelling and control of quantized systems

 Wide-range：estimation, identification, control, et al

 General framework：a research framework can be established parraleling

to the one with precise output

 Significancy: essentially reduce the requirements on measurements

 Algorithm design: less available information, strong nonlinearity

 Theoretical analysis: the matrix is not independent, non-exchangeable  

and contains unknown parameters, etc.

Feature and difficulty on quantized system research



Basic question: 

In order to reach a desired modelling or control goal, how much information 

do we really need ? 

 It is a complex function in terms of task, constraint, complexity

Task: modeling, identification, or control, … …  

Constraint: dynamic, measurement, cost, time, bandwidth, processing, … …

Complexity: Computation, implementation, analysis, ……

 It is involved in unified design of control and communication, 

and needs to develop “control-based information theory”
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